Notation and Symbols

Types of Numbers
Natural Numbers (Counting Numbers): $\mathbb{N}=\{1,2,3,4,5,6, \ldots\}$
Whole Numbers: $\mathbb{W}=\{0,1,2,3,4,5,6, \ldots\}$
Integers: $\mathbb{Z}=\{\ldots,-4,-3,-2,-1,0,1,2,3,4, \ldots\}$
Rational Numbers: A rational number is a number that can be written in the form of $\frac{a}{b}$ where a and b are integers and $b \neq 0$.

Irrational Numbers: An irrational number is a number that can be written as an infinite nonrepeating decimal.
Real Numbers: The real numbers consist of all rational and irrational numbers.
Complex Number: The complex numbers consist of all real numbers and the even roots of negative numbers.
Equality and Inequality Symbols
$=$ "is equal to"
< "is less than"
\leq "is less than or equal to"
\neq "is not equal to" $>$ "is greater than"
\geq "is greater than or equal to"

Absolute Value

The absolute value of a real number is its distance from 0 . Symbolically,
$|a|=a$ if a is a positive number or 0 .
$|a|=-a$ if a is a negative number.

Principles and Properties

Properties of Addition and Multiplication		
For Addition	Name of Property	For Multiplication
$a+b=b+a$	Commutative Property	$a b=b a$
$(a+b)+c=a+(b+c)$	Associative Property	$a(b c)=(a b) c$
$a+0=0+a=a$	Identity	$a \cdot 1=1 \cdot a=a$
$a+(-a)=0$	Inverse	$a \cdot \frac{1}{a}=1(a \neq 0)$
Zero-Factor Law: $a \cdot 0=0 \cdot a=0 \quad$ Distributive Property:	$a(b+c)=a \cdot b+a \cdot c$	

Addition Principle of Equality

$A=B, A+C=B+C$, and $A-C=B-C$ have the same solutions (where A, B, and C are algebraic expressions).

Multiplication (or Division) Principle of Equality $A=B, A C=B C$, and $\frac{A}{C}=\frac{B}{C}$ have the same solutions (where A and B are algebraic expressions and C is any nonzero constant, $C \neq 0$).

Properties of Radicals
If a and b are positive real numbers, n is a positive integer, m is any integer, and $\sqrt[n]{a}$ is a real number then

1. $\sqrt[n]{a b}=\sqrt[n]{a} \cdot \sqrt[n]{b} \quad$ 2. $\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}$
2. $\sqrt[n]{a}=a^{\frac{1}{n}}$
3. $a^{\frac{m}{n}}=\left(a^{\frac{1}{n}}\right)^{m}=\left(a^{m}\right)^{\frac{1}{n}}$
or, in radical notation, $a^{\frac{m}{n}}=(\sqrt[n]{a})^{m}=\sqrt[n]{a^{m}}$

Rules

Divisibility Rules

For 2: If the last digit (units digit) of an integer is $0,2,4,6$, or 8 , then the integer is divisible by 2 .
For 3: If the sum of the digits of an integer is divisible by 3, then the integer is divisible by 3.
For 5: If the last digit of an integer is 0 or 5 , then the integer is divisible by 5 .
For 6: If the integer is divisible by both 2 and 3, then it is divisible by 6 .
For 9: If the sum of the digits of an integer is divisible by 9 , then the integer is divisible by 9 .
For 10: If the last digit of an integer is 0 , then the integer is divisible by 10 .

Rules for Exponents

For nonzero real numbers a and b and integers m and n :

The exponent 1: $a=a^{1}$
The exponent 0 : $a^{0}=1$
The product rule: $a^{m} \cdot a^{n}=a^{m+n}$
The quotient rule: $\frac{a^{m}}{a^{n}}=a^{m-n}$

Negative exponents: $a^{-n}=\frac{1}{a^{n}}$
Power rule: $\left(a^{m}\right)^{n}=a^{m n}$
Power of a product: $(a b)^{n}=a^{n} b^{n}$
Power of a quotient: $\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}$

Linear Equations

Summary of Formulas and Properties of Lines

Standard Form:

$$
A x+B y=C \quad \text { where } A \text { and } B \text { do not both equal } 0
$$

Slope of a line:

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad \text { where } x_{1} \neq x_{2}
$$

Slope-intercept form:

$y=m x+b$
with slope m and y-intercept $(0, b)$

Point-slope form:

$y-y_{1}=m\left(x-x_{1}\right)$ with slope m and point $\left(x_{1}, y_{1}\right)$ on the line
Horizontal line, slope 0: $\quad y=b$
Vertical line, undefined slope: $x=a$

1. Parallel lines have the same slope.
2. Perpendicular lines have slopes that are negative reciprocals of each other.

Factoring Polynomials
 oring Polynomials

Special Factoring Techniques

1. $x^{2}-a^{2}=(x+a)(x-a)$: difference of two squares
2. $x^{2}+2 a x+a^{2}=(x+a)^{2}$: square of a binomial sum
3. $x^{2}-2 a x+a^{2}=(x-a)^{2}$: square of a binomial difference
\qquad

Cartesian Coordinate System

4. $x^{3}+a^{3}=(x+a)\left(x^{2}-a x+a^{2}\right)$: sum of two cubes
5. $x^{3}-a^{3}=(x-a)\left(x^{2}+a x+a^{2}\right)$: difference of two cubes

Inequalities

Linear Inequalities

Linear Inequalities have the following forms where a, b, and c are real numbers and $a \neq 0$:

$$
\begin{array}{lll}
a x+b<c & \text { and } & a x+b \leq c \\
a x+b>c & \text { and } & a x+b \geq c
\end{array}
$$

Compound Inequalities

The inequalities $c<a x+b<d$ and $c \leq a x+b \leq d$ are called compound linear inequalities.
(This includes $c<a x+b \leq d$ and $c \leq a x+b<d$ as well.)

Interval Notation
$\left.\begin{array}{|c|c|c|cc|}\hline \text { Type of Interval } & \begin{array}{c}\text { Algebraic } \\ \text { Notation }\end{array} & \begin{array}{c}\text { Interval } \\ \text { Notation }\end{array} & \text { Graph } \\ \hline \text { Open Interval } & a<x<b & (a, b) & \leftarrow a\end{array}\right]$

Systems of Linear Equations

Systems of Linear Equations (Two Variables)

Consistent

(One solution)

Inconsistent

(No solution)

Dependent

(Infinite number of solutions)

Quadratic Equations

Quadratic Formula

The solutions of the general quadratic equation $a x^{2}+b x+c=0$, where $a \neq 0$, are $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$.

General Information on Quadratic Functions

For the quadratic function $y=a x^{2}+b x+c$

1. If $a>0$, the parabola "opens upward."
2. If $a<0$, the parabola "opens downward."
3. $x=-\frac{b}{2 a}$ is the line of symmetry.
4. The vertex (turning point) occurs where $x=-\frac{b}{2 a}$.

Substitute this value for x in the function to find the y-value of the vertex. The vertex is the lowest point on the curve if the parabola opens upward and it is the highest point on the curve if the parabola opens downward.

Relationships Between Measurements in the U.S. Customary System		
Length	Area	Liquid Volume
12 inches (in.) $=1$ foot (ft)	$1 \mathrm{ft}^{2}=144 \mathrm{in.}^{2}$	1 pint $(\mathrm{pt})=16$ fluid ounces (fl oz$)$
36 inches $=1$ yard (yd)	$1 \mathrm{yd}^{2}=9 \mathrm{ft}^{2}$	1 quart $(\mathrm{qt})=2 \mathrm{pt}=32 \mathrm{fl} \mathrm{oz}$
3 feet $=1$ yard (yd)	1 acre $=4840 \mathrm{yd}^{2}=43,560 \mathrm{ft}^{2}$	1 gallon $(\mathrm{gal})=4 \mathrm{qt}$
5280 feet $=1$ mile (mi)		

Formulas and Definitions

Terms Related to the Basic Equation $R \cdot B=A$
$R=$ rate or percent (as a decimal or fraction)
$B=$ base (number we are finding the percent of)
$A=$ amount (a part of the base)

Terms Related to Profit

Profit: The difference between selling price and cost.

$$
\text { profit }=\text { selling price }- \text { cost }
$$

Percent of Profit:

1. Percent of profit based on cost: $\frac{\text { profit }}{\operatorname{cost}}$
2. Percent of profit based on selling price:
$\frac{\text { profit }}{\text { selling price }}$
Formulas for Calculating Interest
Simple Interest
Compound Interest

$$
I=P \cdot r \cdot t
$$

$$
A=P\left(1+\frac{r}{n}\right)^{n t}
$$

where
$I=$ interest (earned or paid)
$P=$ principal (the amount invested or borrowed)
$r=$ annual rate of interest in decimal form
$t=$ time (in years or fraction of a year)
$A=$ the future value of the investment
$n=$ the number of compounding periods in 1 year

Formulas for Calculating Inflation and Depreciation

Inflation

$$
A=P(1+r)^{t}
$$

Depreciation

$$
V=P(1-r)^{t}
$$

where
$P=$ the original value
$r=$ the annual rate of depreciation or appreciation/inflation in decimal form
$t=$ time (in years or fraction of a year)

List of Common Formulas

Formula Meaning

$C=\frac{5}{9}(F-32) \quad$ Temperature in degrees Celsius C equals $\frac{5}{9}$ times the difference between the Fahrenheit temperature F and 32 .
$d=r t \quad$ The distance traveled d equals the product of the rate of speed r and the time t.
$L=2 \pi r h \quad$ The lateral surface area L (top and bottom not included) of a cylinder is equal to 2π times the radius r of the base times the height h.
$F=m a \quad$ In physics, the force F acting on an object is equal to its mass m times acceleration a.

The Pythagorean Theorem

In a right triangle, the square of the length of the hypotenuse is equal to the sum of the squares of the lengths of the two legs: $\boldsymbol{c}^{\mathbf{2}}=\boldsymbol{a}^{\mathbf{2}}+\boldsymbol{b}^{\mathbf{2}}$

Geometry

Perimeter and Area

Volume

Right circular cylinder

$\underbrace{}_{r} V=\pi r^{2} h$

Right circular cone

Sphere

Angles Classified by Measure

1. Acute

2. Right

3. Obtuse

4. Straight

Triangles Classified by Sides

1. Scalene No two sides are equal.

2. Isosceles At least two sides are equal.

3. Equilateral All three sides are equal.

Triangles Classified by Angles
2. Right One angle is a right angle.

1. Acute All three angles are acute.

2. Obtuse One angle is obtuse.

