Hawkes Learning Systems:

Modular Course Structure Resources
Table of Contents

- Things to Consider When Implementing Modules Page 3
- Course Structure & Timeline .. Page 4
- Course Content & Grading Components Page 6
- Faculty Roles .. Page 10
- Class Structure .. Page 11
- Sample Syllabus from School A ... Page 12
- Sample Materials from School B .. Page 22
Things to Consider When Implementing Modules

1. Course Structure & Timeline
 a. How long is the term?
 b. How many modules should we have?
 c. How many weeks will it take students to complete a module?
 d. What happens if students finish all the modules early?
 e. What happens if students do not finish the expected number of modules by the end of the term?
 f. How will the module course structure impact registration and financial aid?

2. Course Content & Grading Components
 a. What lessons will be included in each module?
 b. What are the grade components of each module? (For example: Pre-Test, Homework, Quizzes, Post-Test, etc.)
 c. What is the weight percentage of each grade component?
 d. Do students receive a grade for each module or do they receive one overall grade? Will it be a letter grade or is it pass/fail?

3. Faculty Roles
 a. How will instructors be involved with the students?
 b. Will instructors be expected to spend additional hours staffing an open lab?
 c. Will we need additional instructional assistants in the classroom?

4. Class Expectations
 a. How many times a week are students attending class?
 b. What material should students work on during the class time?
 c. What are students allowed to work on during open lab time?
 d. When are students allowed to receive help from instructors?

5. Course Materials
 a. What is the cost for students?
 b. Will students need to purchase multiple materials or will we be using combination materials for the course?
Course Structure & Timeline

School A
16 Week Semester
Two Courses – Two Products: Basic College Mathematics & Introductory Algebra
Number of Modules: Basic Mathematics - 9 Modules; Introductory Algebra: 8 Modules
Time to Complete Module: 2-3 Weeks
Flexible Pacing
Finish Early: Students are encouraged to progress more rapidly than the standard pace needed to complete the course in 16 weeks. Students earn full credit for progress and participation after finishing course requirements early, even though they are excused from attending the remaining classes. Early finishers must return to take the departmental final exam with the rest of the class.

A Basic College Mathematics student who finishes the course by the end of week 8 may begin Introductory Algebra immediately by enrolling in a 2nd 8 weeks section of that course designated for this purpose. If a student completes at least 50% of the Introductory Algebra modules before the end of that semester, the student receives an “IP” (In Progress) grade.

Do Not Finish: A student who cannot maintain the minimum pace but who makes good progress completing at least 50% of the modules by the end of the semester, may earn an “IP” grade and have up to 14 weeks to finish remaining modules and take the final exam. This time extension may enable the student to avoid having to repeat the entire course.

When fewer than 50% of the modules are completed in a semester, the student earns an “F.” However, if students re-enroll in the course within 6 months, they may retain credit for completed modules and begin with the next module in the sequence. In addition, students who repeat a course more than 6 months after earning an F may “test out” of modules that were previously mastered by scoring 80% or higher on the pretest for each of those modules.

School B
16 Week Semester
One Course – One Product: Prealgebra & Introductory Algebra
Number of Modules: 13
Time to Complete a Module: 2-4 Weeks
Flexible Pacing
Finish Early: If all modules required for the student’s program or plan of study are completed early, the student can take the relevant exit exam and are then marked “Completed” in the grade book. Once that happens, he is completely done with the course and need not attend the remaining classes.

Do Not Finish: So long as at student completes at least four modules in the course of the semester, he will receive a passing grade in this course. If the student has modules left to complete, he can take this course again for credit and continue working where he left off.
A grade of “I” (Incomplete) may be awarded if the student does not complete 4 modules, but have shown effort throughout the semester and completed at least two modules. If the student is close to completing 4 modules, he may receive a short-term Incomplete, which will be replaced with a letter grade when the 4th module has been completed within 2 weeks of the end of the semester. Otherwise, he may receive a long-term Incomplete, which will be removed when the course has been retaken and reach a total of 4 modules completed.

School C
16 Week Semester
Three Courses – Three Products: *Basic College Mathematics, Introductory Algebra, & Intermediate Algebra*
Number of Modules: 15
Time to Complete a Module: 2-3 Weeks
Flexible Pacing
Finish Early: If a student does not need the next class, they are switched to the final module, not required to attend any more classes, and receive a passing grade at the end of the semester. If the student goes on to take the next class, they have to buy the textbook and software and can immediately start the next class with the same instructor and class times. If the student completes both Basic College Mathematics and Introductory Algebra (for example) within the same semester, he will only have to pay for 1 course.
Do Not Finish: If the student does not complete the modules required for the course, a grade of “Unsatisfactory” or “Incomplete” will be posted. Eligibility for an “Incomplete” will be based on the student having met the required attendance requirements, successful completion of at least four modules and whether or not the student has previously received a grade in the course. The student is marked as “Incomplete” if they made it to the last module and don’t have to pay for the course again in the next semester, but has a shorter deadline to complete the course than the traditional 16-week semester.
Course Content & Grading Components

School A

Module Breakdown by Chapter:

Basic College Mathematics

<table>
<thead>
<tr>
<th>Module 1: Chapter 1</th>
<th>Module 6: Supplementary Packet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module 2: Chapter 2</td>
<td>Module 7: Chapter 6</td>
</tr>
<tr>
<td>Module 3: Chapter 3</td>
<td>Module 8: Chapter 7</td>
</tr>
<tr>
<td>Module 4: Chapter 4</td>
<td>Module 9: Chapter 9; Sec. I.1; Sec. II.1</td>
</tr>
<tr>
<td>Module 5: Chapter 5</td>
<td></td>
</tr>
</tbody>
</table>

Introductory Algebra

<table>
<thead>
<tr>
<th>Module 1: Sec. R.1; Chapter 1</th>
<th>Module 5: Chapter 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module 2: Chapter 2</td>
<td>Module 6: Chapter 6</td>
</tr>
<tr>
<td>Module 3: Chapter 3</td>
<td>Module 7: Chapter 7</td>
</tr>
<tr>
<td>Module 4: Chapter 4</td>
<td>Module 8: Chapter 9; Sec. 10.1 & 10.2; Sec. 8.5</td>
</tr>
</tbody>
</table>

Module Grading Components:

- an optional pre-test (proctored and administered by computer) – If a student earns a score of 80% or higher on a pre-test, he/she has the option of keeping that score as the module’s test grade and proceeding on to the next module. Students scoring lower than 80% on the pre-test are required to complete the other components of the module. However, since the pre-tests are diagnostic, students may receive credit for some sections of the module (by answering 90% of the questions from those sections correctly), even if they do not test out of the entire module. This enables students to progress as quickly as possible through the course without having to repeat material that has already been mastered.
- presentation of content via computer Instruct mode of the software, as well as the textbook and other supplementary resources
- interactive practice with analytical feedback through the Practice mode of software
- graded homework using the Certify mode of the software, as well as supplementary paper worksheets or written textbook assignments
- a proctored, computer-administered post-test
- submission of written documentation of test question solutions and a course notebook

Final Grade Weighted Average Distribution:

Students receive one grade at the end of the course.

Module Tests: 45%
Final Exam: 25%
Homework: 20%
Progress Grade: 10%

* Progress Grade – The student can earn up to 100 points per week in the Progress category attendance, satisfactory completion of note-taking guides and documentation of Certify questions, and being “on pace” with or ahead of the scheduled due dates for passing module tests. Points are awarded as follows:

10 points per house of class = 30 points/week, with a 5 point deduction for being late or leaving early
20 points for notebook completion
50 points for keeping on pace by having scored greater than 80% on all module tests due by the end of that week

In both courses, students must have an overall weighted average of at least 70% AND score at least 60% on the departmental final exam in order to pass the course.

School B
Module Breakdown by Chapter:

Prealgebra & Introductory Algebra

<table>
<thead>
<tr>
<th>Module 1: Chapter 1</th>
<th>Module 7: Chapter 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module 2: Chapter 2</td>
<td>Module 8: Chapter 7</td>
</tr>
<tr>
<td>Module 3: Chapter 3</td>
<td>Module 9: Chapter 9</td>
</tr>
<tr>
<td>Module 4: Chapter 4</td>
<td>Module 10: Chapter 10</td>
</tr>
<tr>
<td>Module 5: Chapter 5</td>
<td>Module 11: Chapter 11</td>
</tr>
<tr>
<td>Module 6: Chapter 6</td>
<td>Module 12: Chapter 12</td>
</tr>
</tbody>
</table>

Module Grading Components:

- Pre-tests (proctored and administered by computer) – If a student demonstrates mastery, then he can move onto the next module. Pre-test is only offered for the first 5 modules.
- Certify (software homework)
- quizzes
- concept questions (packet including checklist and a set of concept questions, evaluated based on a grading rubric)
- post-tests (proctored and administered by computer)
- Comprehensive exams (proctored and administered by computer) – After completing modules 1-3, the student is required to complete the “Computational Skills Exam.” This covers key skills from Modules 1-3 on which the student must demonstrate proficiency without a calculator. After completing modules 1-4, modules 5-8, and modules 9-12, you will take a comprehensive exam covering the specified modules.
- progress

Final Grade Weighted Average Distribution:
Students receive one grade at the end of the course.

Module Grade Distribution:
If completed by the pre-test, the test score accounts for 100% of the module grade.
If completed by the post-test:
Homework: 30%
Quizzes (optional)
Concept Questions: 10%
Post-Test: 60%

The grade for the course as a whole will be computed as follows.

Average of top 4 module grades: 80%
Progress: 10%
Comprehensive exam(s): 10%

* Progress Grade functions to encourage the student to make steady progress in the course. Each week, the student can earn points for progress by completing at least one of the following:
 - Demonstrate PROGRESS by passing the pre-test or post-test for a module
 - Demonstrate PROGRESS by completing at least 4 certifies
 - Demonstrate EFFORT to make progress by attending all 3 hours of class that week. If the student misses a scheduled class time, the student can still receive credit for effort by making up time in the lab.

If the student meets any of these criteria, the student will receive 100% as the progress score for the week; otherwise the student will receive a 0%.

School C
Module Breakdown by Chapter:

Basic College Mathematics

<table>
<thead>
<tr>
<th>Module 1: Chapter 1 & 2</th>
<th>Module 4: Chapter 7 & 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module 2: Chapter 3 & 4</td>
<td>Module 5: Chapter 9</td>
</tr>
<tr>
<td>Module 3: Chapter 5 & 6</td>
<td></td>
</tr>
</tbody>
</table>

Introductory Algebra

<table>
<thead>
<tr>
<th>Module 6: Chapter R, 1 & 2</th>
<th>Module 9: Chapter 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module 7: Chapter 3</td>
<td>Module 10: Chapter 4</td>
</tr>
<tr>
<td>Module 8: Chapter 6</td>
<td></td>
</tr>
</tbody>
</table>

Intermediate Algebra

<table>
<thead>
<tr>
<th>Module 11: Chapter 1</th>
<th>Module 14: Chapter 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module 12: Chapter 2 & 3</td>
<td>Module 15: Chapter 6 & 7</td>
</tr>
</tbody>
</table>
Module Grading Components:

- attendance
- Certify (software homework)
- chapter practice tests
- module mastery tests
- 3-ring binder with grade sheets

Final Grade Weighted Average Distribution:

Attendance: 10%
Homework: 10%
Chapter Practice Tests: 20%
Module Mastery Tests: 60%

3 Ring Binder with grade sheets is required for grade.

A course score will be calculated however the grade will be recorded as “S” (Satisfactory) or “U” (Unsatisfactory). The student must achieve a course score greater than 75% to earn an “S.”
Faculty Roles

School A

In addition to the primary instructor, one additional instructional assistant (a qualified tutor or second instructor) is present during each class meeting to provide personalized assistance on demand in classes with more than 15 students enrolled.

All campuses need to provide at least a few hours of staffed Open Lab time each week for students taking the courses.

Therefore each instructor is expected to staff the classroom/lab, either during Open Lab time or as the instruction assistant in another instructor’s class, one hour per week for each section of the course that he/she teaches. This is in lieu of the office hour that is required for full-time faculty for each 3-credit course that they teach. Considering that most instructors will spend much less time doing class preparation and grading than in a traditional course, this seems to be a reasonable expectation for adjunct instructors, also. Whenever possible, the additional hours will be scheduled at times that are convenient for the instructors – perhaps just before or just after their regular class sessions.

In addition, the instructor interacts with each student during class, at least once each week, to review the student’s progress, discuss recommended interventions, identify strategies, etc.

School B

Lab Manager – Ensures continuity of coverage between class meeting times, manages space, passwords, attendance, AB Tutor and answers student questions as above responsibilities permit.

Instructors – Receive 3 credits load. During the emporium instructors pull out and work with groups of students, counsel students on making progress and strategies for success, and answer student questions. Outside the emporium instructors run reports, meet regularly to discuss student needs, grade concept questions and comprehensive exams, continually update and improve course materials and assessments and work in tutor role for 3 hours/week total.

Tutors – Answer student questions in the lab. Typically one would be an instructor working as part of their load and two tutors would be students or faculty tutoring.

The goal is to have one instructor or tutor per 15-20 students.

School C

There are two instructors present during each class meeting to provide personalized assistance on demand in classes.
Class Structure

School A

The students, instructor and instructional assistant for each section of the course meet together in the same computer-equipped lab for three hours each week. Class attendance for all three hours per week is mandatory.

During each class meeting, students work independently on coursework with personalized assistance available from the instructor and/or the instructional assistant throughout class time. Students also take all pretests, module test and quizzes in a proctored setting, either during class or staffed Open Lab time.

Since students may have assistance while working in Practice mode but not in Certify, they should use most of their in-class time either to work in Practice or to take tests.

School B

The class is scheduled 3 hours/week and attendance is mandatory. The student should plan on spending at least 6-10 hours per week doing work for this class. Most course time will be spent working on the computer. Instructors are available to answer questions about material. Instructors will also group students working on similar material together for mutual support and sometimes take such groups aside for demonstration and/or discussion of particular topics. For the vast majority of students only working on math during the 3 hours per week that class meets will not all the student to complete the required four modules.

The classroom is staffed by an instructor or tutor from 8:30am – 5:00pm Monday through Thursday and 8:30am to 1:50pm on Friday. When classes are scheduled, students in that class have priority but, space permitting; students are welcome to work outside of their scheduled time.

The math computer lab also has the software installed and is open all day for students’ use.

School C

The student is required to spend 3 ½ hours per week in the math classroom and need to spend more time studying and completing the homework outside the classroom. The student will sit for ten or more chapter practice tests and five module mastery tests during thirty class sessions.
Syllabus for MAT091 Basic Math Skills

<table>
<thead>
<tr>
<th>Section(s) and Location</th>
<th>MAT091 Classroom:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instructor</td>
<td></td>
</tr>
<tr>
<td>Contact Information</td>
<td>Phone:</td>
</tr>
<tr>
<td></td>
<td>Email:</td>
</tr>
<tr>
<td></td>
<td>Office: Office Hours:</td>
</tr>
</tbody>
</table>

Catalog Description

Students move through a series of content modules using a mastery learning approach, making extensive use of computer software for content delivery, practice of skills, and assessment (graded homework, quizzes, and module pre- and post-tests). Topics include operations with whole numbers, fractions, decimals, and signed numbers; ratios, rates, and proportions; percent; measurement conversions within the U. S. Customary System and within the Metric System using Unit Analysis; scientific notation; evaluating and simplifying variable expressions; solving linear equations; and some basic geometry.

3 credits, 3 class hours Prerequisite: By placement

Textbook and Other Required Materials

1) Textbook: Basic College Mathematics, 8th edition, by D. Franklin Wright, from Hawkes Learning Systems/Quant Systems

2) Software: Hawkes Learning Systems BAM software

3) A USB flash drive (portable data storage device)

4) A 3-ring binder and loose-leaf paper for notes and homework

Important:

- All of the items listed above are required.
- The first 3 items should be purchased as a bundled set from the Bookstore.
- Materials obtained from most other sources (such as Amazon) will not include the correct software package! Each Hawkes software access code is permanently linked to the original purchaser and cannot be reused or shared by more than one person.
- An appropriate software access code may be purchased directly from www.hawkeslearning.com if a student already has the correct textbook and a flash drive.
- Students repeating MAT091 do not need new materials – the same book
Course Overview and Instructional Plan

Students move through a series of 9 sequential content modules using a mastery learning approach and making extensive use of computer software for content delivery, practice of skills, graded homework, and module tests. Personalized support is also readily available from the instructor and/or an instructional assistant, both during scheduled classes and in Open Lab time.

During class time, the instructor circulates throughout the room to discuss each student’s progress, answer questions, and clarify concepts, as needed, while students practice math skills on the computer or review test results. In many classes, an instructional assistant is also available to provide individual assistance. Graded assignments, as well as pretests and module tests, **must be done without any assistance**, however. Nearly all tests, except the final exam, are done on a computer in the classroom or another proctored setting.

Each module begins with an optional pretest to assess the student’s current level of mastery of the module’s content. Students who score 80% or higher on the pretest receive credit for that module, and may continue directly to the pretest for the next module. Students who score below 80% on the pretest must complete notebook activities and computer assignments, with 80% mastery or higher on each graded activity, before taking the module test. Again, the student must score 80% or higher to pass the module and move on. (*Students may test out of some sections of the module, even if they do not get credit for the entire module through the pretest.)*

For each section within a module, the student takes notes in a required notebook while reading the section in the textbook and working through the **Instruct** portion of the Hawkes Learning Systems (HLS) software.

Then the student uses the **Practice** mode of HLS to develop skills and prepare for the graded portion of the homework that is called **Certify**. Many supportive features are available in **Practice** (e.g., hints to get started, immediate feedback, worked-out solutions, etc.). The student may choose to continue practicing as long as necessary to master the material. Different examples of the same question types are generated each time a new set of practice questions is requested, providing great variety to support optimal learning.

When the student can answer all question types correctly without assistance, he/she completes **Certify** to receive credit for the section by scoring 80% or higher. The module test is taken after all sections in that module have been completed successfully.

There is no penalty for repeating assignments multiple times in order to achieve mastery, but each module test should be taken no more than 5 times. If a test is not passed (≥ 80%) on the 1st or 2nd attempt, the student must meet with the instructor to work out a plan for preparing for any
further attempt(s). When time permits, a student may retake already-
passed module tests to try to raise the scores, if desired.

Practice tests are available for each module, and may be taken an unlimited
number of times from any computer on which the HLS software is loaded. The scores from the practice tests do not affect the student’s overall grade.

After all modules and review materials have been completed, the student
takes the departmental final exam (on paper) and must score 60% or higher in order to keep a passing grade in the course. The exam is available at the end of the first 8 weeks as well as during exam days at the end of the semester. Retakes of the final exam are not permitted except in extraordinary situations.

<table>
<thead>
<tr>
<th>Objectives – Student Learning Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>The student will be able to demonstrate each of the following skills in writing on one or more tests without referring to notes, textbook, or other resources:</td>
</tr>
</tbody>
</table>

*1. Use the Order of Operations Agreement to correctly evaluate numerical expressions involving integers and/or fractions and any combination of addition, subtraction, multiplication, division, whole number exponents, and parentheses.

2. Write the prime factorization of a given natural number greater than 1 and less than 1000.

*3. Correctly evaluate expressions involving addition, subtraction, multiplication, and division of pairs of numbers from the following
categories, and express the answers in simplest form:

a) integers, b) decimal numbers, c) fractions with unlike denominators and mixed numbers (in combination with each other and with whole numbers).

4. Use the symbols <, >, and = to correctly identify the size relation between pairs of integers, pairs of fractions with unlike denominators, pairs of decimals, and a fraction compared with a decimal.

5. Correctly round a given whole number or decimal number to a given place value.

6. a) Using words, correctly write the name of a given whole number, less than one quadrillion, that is shown written in standard decimal form.

b) Using words, correctly write the name of a given positive number, less than one, that is shown written in standard decimal form.

c) Correctly write a whole number, less than one quadrillion, in standard decimal form when given its name written in words.

d) Correctly write a positive number, less than one, in standard decimal form when given its name written in words.

7. a) When given two quantities (measured with either the same or different units), correctly express their relationship using a ratio or rate written in simplest fraction form.

b) Correctly write a unit rate involving two given quantities.

8. Correctly set up and solve a proportion when given a verbal description of a proportional situation in which one quantity is unknown.

9. Correctly convert a given number from one of the following forms to each of the other two forms: a) percent, b) fraction/mixed number, c) decimal.

10. Find the missing percent, base, or amount when given the other two using either the percent equation \(\text{percent} \cdot \text{base} = \text{amount} \)
or the percent proportion \(\frac{\text{amount}}{\text{base}} = \frac{\text{percent}}{100} \).

11. Correctly evaluate expressions involving only rational numbers, absolute value symbols, and negative signs.

12. a) Correctly convert given numbers greater than 10 from scientific notation to standard decimal form.

b) Correctly convert given numbers less than 1.0 from scientific notation to standard decimal form.
c) Correctly convert given numbers greater than 10 from standard decimal form to scientific notation.

d) Correctly convert given numbers less than 1.0 from standard decimal form to scientific notation.

13. Correctly use the Distributive Property, Commutative and Associative Properties of Addition and Multiplication, and combining like terms to simplify a variable expression.

14. Correctly solve linear equations in one variable that may include variable and/or constant terms on both sides of the equation and may include expressions in parentheses.

15. Write a variable expression or equation that correctly represents an expression described verbally in writing.

16. a) Convert measurements of length/distance, weight, and capacity to equivalent measurements with different sized units within the U.S. Customary System.

 b) Convert measurements of length/distance, mass, and capacity to equivalent measurements with different sized units within the Metric System (S.I.).

 [* This course objective has been identified as a student learning outcome that must be formally assessed as part of the Comprehensive Assessment Plan of the college.]

<table>
<thead>
<tr>
<th>Attendance and Progress</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class attendance is required. Students are expected to arrive on time and use the entire scheduled class time to work on course materials.</td>
</tr>
</tbody>
</table>

Part of the student’s final grade is based on Progress Points earned each week for class attendance, satisfactory notebook completion (including filled-in note-taking guides and documentation of **Certify** questions), and completing module tests by the due dates listed in the course outline (being “on pace”).

Progress Points are awarded as follows (for a possible total of 100 points per week):

- **10 points per hour** of class attended (= 30 points/week) for **attendance**, with a 5 point deduction for arriving late or leaving early, and a full 10 points deducted if both apply
- **20 points** for **notebook** completion
- **50 points** for keeping on pace by having scored $\geq 80\%$ on all module tests due by the end of that week – **(no partial credit here)**

Students who fall behind but then catch up again can resume earning
“on pace” credit in future weeks.

Any time that class is being held and a student is not present counts as an absence, regardless of the reason (including illness, medical appointments, field trips, transportation problems, court appearances, participation in athletic events, important personal business, etc.).

Students who master the content more rapidly than the standard pace may finish all the modules before the end of the semester, and are not required to attend class meetings after completing the course. From that point on, they will receive full credit for Progress each week.

<table>
<thead>
<tr>
<th>Homework</th>
</tr>
</thead>
<tbody>
<tr>
<td>For each section covered, the student begins by reading the section in the textbook and in the Instruct mode of the HLS software, and taking notes in a printed note-taking guide and/or on notebook paper, kept in the course binder.</td>
</tr>
<tr>
<td>Next, the student uses the Practice mode of the software, receiving immediate feedback on responses, and using the Tutor, Display Solution, and Step-by-Step features, as needed, for guidance. The student continues practicing until he/she is confident with all the material. (Both Practice and Certify use questions of the same types but with different numbers each time they are accessed, so students who repeat Practice get new questions to try each time.)</td>
</tr>
<tr>
<td>Then the student is ready to do the questions in Certify, without any outside assistance, and gets credit for the homework assignment when 80% mastery is achieved. There is no penalty for repeating a Certify, but it should not be necessary if the student has used Practice well.</td>
</tr>
<tr>
<td>Although most of the homework will be submitted via computer, students should write all Certify questions in their notebook, showing all the steps in an orderly way, before transferring the answers to the computer to be scored. Some assignments will also include paper worksheets or questions from the textbook that need to be written out, neatly organized, in the notebook.</td>
</tr>
<tr>
<td>Each student should plan to spend at least one hour each day, 6 days a week, in addition to class time, working on math in order to make adequate progress.</td>
</tr>
<tr>
<td>[This is a college standard nation-wide for 3-credit courses.]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>As described in the Course Overview, the Module Pretests and Module Tests are done on a computer during class time or Open Lab time. After the student has Certified in all sections assigned for the module and has submitted his/her notebook for the instructor’s approval, the instructor or test proctor must enter a password to let the student begin the test. Online</td>
</tr>
</tbody>
</table>
tests cannot be paused and resumed later.

The student copies each question from the computer screen onto a test form where all calculations and answers are written. Then the student enters the answers on the computer. After the test is completed it is automatically scored instantly. The student then records the score on the paper test form, indicates which answers were marked “incorrect”, and reviews the results with the instructor. When reviewing a completed test, the student is encouraged to use links from the **Results** feature to get extra targeted practice on the types of questions that were missed on the test.

The **final exam** will be given on one of the scheduled exam days, **December 13, 14, or 15**, so students should not make plans to leave Batavia for Christmas break before 6 p.m. on December 15. They should tell their family members that they must **not** have airline, train, or bus reservations that leave before then. The actual date and time will be announced in class a few weeks before the exam.

<table>
<thead>
<tr>
<th>Calculator Use and Other Aids and Accommodations</th>
<th>Only students who qualify for special accommodations and who have given the instructor a valid accommodation form issued by the CAP (Center for Academic Progress) are permitted to use a calculator for Pretests, Module Tests, graded assignments (Certifies), quizzes, and the final exam. Students with calculator accommodations may use only a simple “four-function” calculator provided by the college – not a scientific or graphing calculator. No other aids, such as note cards with formulas, are permitted while doing any graded activities.</th>
</tr>
</thead>
</table>
| Grading | In calculating the student's final average, scores are weighted as follows:
Final Exam 25%
Module Tests 45% (5% each)
Homework 20%
Progress 10%
In order to pass the course, **all** of the following conditions must be met:
- All 9 modules have been completed with 80% mastery or higher
- The score on the final exam is at least 60%
- The overall/final average is 70% or higher
Final Average | **Final Grade** |
<p>| 90% - 100% | A |
| 80% - 89.99% | B |</p>
<table>
<thead>
<tr>
<th>Grade Reports</th>
<th>Final course grades will be posted in the student’s account about a week after the end of final exams.</th>
</tr>
</thead>
</table>
| Extra Help Resources | Math Support:
 - Ask the professor and/or instructional assistant for assistance during class.
 - Use the help features of the Practice mode in the HLS software.
 - Re-read the textbook section and Instruct again, if needed.
 - Drop in for assistance during Open Lab time, or in the Math Learning Center (D360), Monday-Friday 8:30 a.m.- 4:30 p.m.
 - Class members can often help each other! (Remember not to give or receive “help” on a Certify or a Pretest or Module Test, though!)
 Hawkes Technical Support: 1-843-571-2825 or 1-800-426-9538
 Support Hours: Monday-Friday 8:30 a.m. – 10:00 p.m. |
| Classroom Expectations | The purpose of these policies is to establish a safe, comfortable, non-distracting, and effective learning environment for all the students and staff.
 1) Students may not access email, Facebook, or other websites, or participate in texting **AT ANY TIME** in the classroom or lab without prior |
instructor approval.

2) Cell phones must be stored **out of the students' sight** during class. If students have a valid need to keep their phones turned on and a call comes through, they should leave the classroom before answering.

3) The use of iPods or other MP3 players or radios – even with ear buds or headphones – is not appropriate during class.

4) Working on assignments for other classes is not acceptable during math class.

5) During class and in Open Lab, students will work on college-owned computers, not their own portable computers.

6) Students who have accommodations, documented by the Center for Academic Progress, that permit the use of a calculator may use ONLY the simple four-function calculators provided in the math classroom/lab and/or testing center.

7) Students are expected to treat fellow students and all college personnel with respect, using inoffensive language and avoiding hostile speech or actions. Students who feel substantially frustrated or agitated may leave the room for a few minutes in order to calm down before returning.

8) Students should refrain from singing, humming, making other distracting sounds, or chatting with others about topics other than math.

9) It is reasonable that a student may need to use the restroom occasionally, but leaving class for more than 5-10 minutes at a time or missing several minutes of class frequently is not appropriate.

10) The college does not allow food or beverages in computer classrooms/labs.

11) The penalty for inappropriate classroom conduct is the loss of all Progress points for the week.

12) Each student must show his or her own work on all assignments and tests. Copying someone else’s work, allowing one’s work to be copied, and/or submitting homework done by someone else are not acceptable. Evidence of cheating on a test (including unauthorized use of a calculator, reference to notes, etc.) will result in the student forfeiting all homework and test points for that module.

<table>
<thead>
<tr>
<th>Class Cancellation Procedures</th>
<th>If all classes are cancelled or delayed due to bad weather or other emergency, the best source of information is the college website.</th>
</tr>
</thead>
<tbody>
<tr>
<td>One Final Note About</td>
<td>Always use your school email account for anything related to school!!!</td>
</tr>
<tr>
<td>Email</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>Especially use your college account:</td>
<td></td>
</tr>
<tr>
<td>- in all communications with faculty and college staff</td>
<td></td>
</tr>
<tr>
<td>- as default email when you enroll in Hawkes Learning System</td>
<td></td>
</tr>
<tr>
<td>Some of the reasons for this college policy:</td>
<td></td>
</tr>
<tr>
<td>- Virus protection issues</td>
<td></td>
</tr>
<tr>
<td>- Backup protection</td>
<td></td>
</tr>
<tr>
<td>- Accuracy in identity recognition</td>
<td></td>
</tr>
<tr>
<td>- Legal issues</td>
<td></td>
</tr>
<tr>
<td>- Faculty and staff may automatically delete emails from unrecognized names/addresses</td>
<td></td>
</tr>
</tbody>
</table>

If you have difficulty accessing your school email at any time: Go to T207 on the second floor in the Technology Building or contact the Help Desk [see contact information above] immediately.

Remember, you are expected to check your school email at least once each day, Monday-Friday !